Table of Contents

Electronic Transmission Control

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose of the System</td>
<td>4</td>
</tr>
<tr>
<td>Transmission Versions and Control Systems</td>
<td>6</td>
</tr>
<tr>
<td>Transmission Identification</td>
<td>8</td>
</tr>
<tr>
<td>System Components</td>
<td>10</td>
</tr>
<tr>
<td>Transmission Control Module</td>
<td>11</td>
</tr>
<tr>
<td>Speed Sensing</td>
<td>12</td>
</tr>
<tr>
<td>Transmission Oil Temp Sensor</td>
<td>13</td>
</tr>
<tr>
<td>Kickdown Switch/Circuit</td>
<td>14</td>
</tr>
<tr>
<td>Brake Switch</td>
<td>15</td>
</tr>
<tr>
<td>Transmission Range Selector Switch</td>
<td>16</td>
</tr>
<tr>
<td>Transmission Program Switch</td>
<td>17</td>
</tr>
<tr>
<td>Steptronic Components</td>
<td>18</td>
</tr>
<tr>
<td>Magnetic Valves</td>
<td>19</td>
</tr>
<tr>
<td>Pressure Regulating Solenoids</td>
<td>20</td>
</tr>
<tr>
<td>Mechatronics Module</td>
<td>21</td>
</tr>
<tr>
<td>Instrument Cluster</td>
<td>22</td>
</tr>
<tr>
<td>Transmission Features and Principles of Operation</td>
<td>24</td>
</tr>
<tr>
<td>Adaptive Hydraulic Pressure Control</td>
<td>24</td>
</tr>
<tr>
<td>Downshift Protection</td>
<td>25</td>
</tr>
<tr>
<td>Reverse Lockout</td>
<td>25</td>
</tr>
<tr>
<td>Engine Warm Up Cycle</td>
<td>25</td>
</tr>
<tr>
<td>ASC/DSC Shift Intervention</td>
<td>25</td>
</tr>
<tr>
<td>Torque Reduction</td>
<td>25</td>
</tr>
<tr>
<td>Emergency Program</td>
<td>26</td>
</tr>
<tr>
<td>A/C Compressor Load Sensing</td>
<td>27</td>
</tr>
<tr>
<td>Shift Lock</td>
<td>27</td>
</tr>
<tr>
<td>Torque Converter Clutch</td>
<td>28</td>
</tr>
<tr>
<td>Shift Solenoid Control</td>
<td>30</td>
</tr>
<tr>
<td>Pressure Regulation</td>
<td>31</td>
</tr>
<tr>
<td>Shift Programs</td>
<td>32</td>
</tr>
<tr>
<td>Steptronic</td>
<td>34</td>
</tr>
</tbody>
</table>
Model: All with BMW Automatic Transmission

Production: All

Objectives:

After completion of this module you will be able to:

• Identify BMW EH Automatic Transmissions.

• Identify Electronic Transmission Control Components

• Understand Electronic Transmission Operation

• Diagnose Transmission related faults using the DISplus or GT-1

• Understand service items and special tools.
Purpose of the System

Electronically controlled transmissions were introduced on BMW products in 1986 on 5 and 7 series vehicles. Currently EH (Electro-hydraulic) transmissions are offered on almost every production model (Except E46 M3 and E39 M5). EH transmissions offer the following benefits to the driver:

- Increased driving safety by reducing fatigue. All shifts are automatic as opposed to manual transmissions which require more driver interaction.
- Increased fuel economy through use of lock up torque converter.
- Increased fuel economy through optimized shift points.
- Improved shift comfort by use of “Overlap Shift” technology (ZF).
- More available features through the use of CAN bus technology.
The EH Control System is designed to work in conjunction with the engine electronics for precise shift control. The TCM receives information on engine RPM, load and throttle position to provide optimum shift points to maximize fuel economy and driver comfort.

The function of an EGS System is to:

- Monitor all operating conditions through input signals
- Continually assess operating conditions by processing input data and select the appropriate operating program for current conditions.
- Activate transmission system components and to communicate with other drivetrain control systems.
- Respond to driver selected driving program (Economy, Sport or Manual).

In addition to providing shift control, the TCM also adapts to changing conditions within the transmission by monitoring slip ratios and modifying line pressure. This increases the life of the transmission and reduces maintenance and adjustments. The TCM controls the operation of the Lock-Up Torque Converter which further increases economy.

On current models, the TCM also has the capability of adapting to driver habits and responds to changing environmental conditions. Items such as rate of throttle input and kickdown requests are monitored to select the most appropriate shift program.

The EGS system is also required to maintain occupant safety, safeguard drivetrain damage, improve vehicle emissions and operate in failsafe mode when a malfunction occurs.
Transmission Version and Control Systems

Each BMW Electro-hydraulic transmission has a corresponding control system. They are designated “GS” which stands for Transmission Control. This acronym is from the German words Getriebe Steurung. Each transmission can have more than one control system, this depends upon application (model year, series etc.). Below is a listing of ZF control systems used on BMW vehicles, Hydramatic control systems are shown on the opposing page.

ZF Control Systems

<table>
<thead>
<tr>
<th>Transmission BMW ID #</th>
<th>Manufacturer ID</th>
<th>Model/Year</th>
<th>Control System</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td>4HP22 (EH)</td>
<td>4HP22 (EH)</td>
<td>86 535i</td>
<td>GS 1.2X</td>
<td>M30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>86 635i</td>
<td>GS 1.2X</td>
<td>M30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>86 735i</td>
<td>GS 1.2X</td>
<td>M30</td>
</tr>
<tr>
<td>4HP24 (EH)</td>
<td>4HP24 (EH)</td>
<td>88-99 750L (E32)</td>
<td>GS 1.27</td>
<td>M70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>92-94 750L (E32)</td>
<td>GS 1.29</td>
<td>M70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90-94 850i/Ci (E31)</td>
<td>GS 1.29</td>
<td>M70</td>
</tr>
<tr>
<td>A5S310Z</td>
<td>SHP18</td>
<td>93 530i/t (E34)</td>
<td>GS 7.3</td>
<td>M60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>94 530i/t (E34)</td>
<td>GS 7.32</td>
<td>M60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95 M3 (E36)</td>
<td>GS 7.11</td>
<td>S50 (US)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>96-99 M3 (E36)</td>
<td>GS 8.32</td>
<td>S52</td>
</tr>
<tr>
<td>A5S325Z</td>
<td>SHP19</td>
<td>00 323i/C/Ci (3/00-8/00)</td>
<td>GS 8.60</td>
<td>M52 TU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01 323i/T (from 4/01)</td>
<td>GS 8.60</td>
<td>M52 TU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01-02 325i/C/Ci from 9/00</td>
<td>GS 8.60.4</td>
<td>M54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00-01 330i/C/Ci from 6/00</td>
<td>GS 8.60.4</td>
<td>M54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01- 525 from 3/01</td>
<td>GS 8.60.4</td>
<td>M54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01- 530 from 3/01</td>
<td>GS 8.60.4</td>
<td>M54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>03 Z4 (E85) 2.5i and 3.0i</td>
<td>GS 8.60.4</td>
<td>M54</td>
</tr>
<tr>
<td>A5S440Z</td>
<td>SHP24</td>
<td>97 840C/i (E31) from 9/96</td>
<td>GS 8.55 (CAN index 50)</td>
<td>M62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>97 440i/L (197-4/97)</td>
<td>GS 8.55 (CAN index 50)</td>
<td>M62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>97 740i/L (5/97-8/97)</td>
<td>GS 8.55 (CAN index 50)</td>
<td>M62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98-03 540i</td>
<td>GS 8.60.2 (CAN index 60)</td>
<td>M62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98-01 740i/iL</td>
<td>GS 8.60.2 (CAN index 60)</td>
<td>M62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00- X5 4.4i</td>
<td>GS 8.60.2</td>
<td>M62TU</td>
</tr>
<tr>
<td>A5S560Z</td>
<td>SHP30</td>
<td>93-94 740i/L (E32)</td>
<td>GS 9.2</td>
<td>M60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>93-95 540i (E34)</td>
<td>GS 9.2</td>
<td>M60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>94-95 540i (E34)</td>
<td>GS 9.22</td>
<td>M60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>94-95 840i/Ci (E31)</td>
<td>GS 9.22</td>
<td>M60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95 740i/L (E38)</td>
<td>GS 9.22</td>
<td>M60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95-01 750L (E38)</td>
<td>GS 9.22.1</td>
<td>M73/M73TU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>96-97 740i/L (-1/97)</td>
<td>GS 9.22.1</td>
<td>M62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>96 840C/i (E31)</td>
<td>GS 9.22.1</td>
<td>M62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95-97 850Ci</td>
<td>GS 9.22.1</td>
<td>M73</td>
</tr>
<tr>
<td>GA6HP26Z</td>
<td>GA6HP26Z</td>
<td>02- 745L (E65/E66)</td>
<td>GS 19</td>
<td>N62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>03- 760L (E66)</td>
<td>GS 19</td>
<td>N73</td>
</tr>
</tbody>
</table>
Hydramatic Control Systems

<table>
<thead>
<tr>
<th>Transmission BMW ID #</th>
<th>Manufacturer ID #</th>
<th>Model/Year</th>
<th>Control System</th>
<th>Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4S310R (THM-R1)</td>
<td>4L30-E(A4S310R)</td>
<td>90-92 525i (E34)</td>
<td>GS 4.14 & GS 4.16</td>
<td>M50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>93-95 525i (E34)</td>
<td></td>
<td>M50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>92 325i, 325is (E36)</td>
<td></td>
<td>M42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>93-95 325is (E36)</td>
<td></td>
<td>M42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>92-95 318i (E36)</td>
<td></td>
<td>M42</td>
</tr>
<tr>
<td>A4S270R</td>
<td>4L30-E(A4S270R)</td>
<td>96-98 328i (E36/7)</td>
<td>GS 8.34</td>
<td>M52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>96-98 318i (E36/7)</td>
<td>GS 8.34</td>
<td>M52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>96-98 318i (E36/5)</td>
<td>GS 8.34</td>
<td>M52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>96-98 325i (E36/5)</td>
<td>GS 8.34</td>
<td>M52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>96-98 Z3 2.8 (E36/7)</td>
<td>GS 8.34</td>
<td>M52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>97-98 528i (E39)</td>
<td>GS 8.34</td>
<td>M52</td>
</tr>
<tr>
<td>A5S360R (GM5)</td>
<td>5L40-E (A5S360R)</td>
<td>99-00 323Ci (7/98-3/00)</td>
<td>GS 20</td>
<td>M52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99-00 328Ci (6/98-5/00)</td>
<td>GS 20</td>
<td>M52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99-00 528i (E39) 9/99-8/00</td>
<td>GS 20</td>
<td>M52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99-00 325i (E36/7) 2.3/2.8</td>
<td>GS 20</td>
<td>M52</td>
</tr>
<tr>
<td>A5S390R (GM5)</td>
<td>5L40-E (A5S390R)</td>
<td>00-03 X5 3.0i (4/00 -)</td>
<td>GS 20</td>
<td>M54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01-03 325i/325i/325iT & 330xi (8/00)</td>
<td>GS 20</td>
<td>M54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01 525i/T (9/00-3/01)</td>
<td>GS 20</td>
<td>M54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01 330i (8/00-3/01)</td>
<td>GS 20</td>
<td>M54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01-02 Z3 2.5/3.0 (6/00-)</td>
<td>GS 20</td>
<td>M54</td>
</tr>
</tbody>
</table>

GS 20 TCM (Siemens)
Transmission Identification

BMW automatic transmission are manufactured by two suppliers for the US market:

- **Zahnradfabrik Friedrichshafen**: Commonly referred to as ZF. ZF manufactures both manual as well as automatic transmissions.

- **GM Powertrain - Hydramatic**: Hydramatic is a manufacturing division of General Motors located in Strasbourg, France. Hydramatic supplies automatic transmissions to BMW for four and six-cylinder vehicles.

BMW has developed an internal numbering system for their transmissions for ordering parts, information research and identification. Also, each transmission manufacturer uses an internal identification system. Here is a breakdown of these identification codes:

BMW Identification Code Breakdown

- **A5S 440Z**
 - A = Automatic
 - S = Standard
 - Overdrive Ratio
 - S = Top Gear Overdrive
 - D = Top Gear Direct Drive
 - Manufacturer
 - Z = ZF
 - R = Hydramatic
 - G = Getrag
 - Number of Gears
 - Maximum Input Torque Rating in Nm.

ZF Identification Code Breakdown

- **5HP 24**
 - HP = Hydraulic Planetary (automatic)
 - Number of Gears
 - ZF Internal Designation

Hydramatic Transmissions have internal designations, however they are not used often. The internal code for the A4S310/270R is 4L30-E and the A5S360/390R is 5L40-E.
Transmission ID Tag Location

In order to identify BMW transmissions there are identification tags located externally on the transmission case. The tag contains information such as Manufacturer, Serial number, transmission type etc. This information is needed when ordering parts, referencing bulletins and calling for technical assistance.

- **ZF - Tag is Located on** -
 1. Right hand side (passenger side) of transmission case.
 (5HP30 and 5HP18)
 2. Left hand side (drivers side) of transmission case.
 (6HP26Z, 5HP24 and all 4HP)
 3. Rear under output shaft. (5HP19)

- **GM - Located on left hand side (drivers side) of transmission case.**
System Components (Electrical)

Electronic Transmission Control
Transmission Control Module

The TCM receives inputs, processes information and actuates the output elements to provide optimal shift points. The TCM is programmed for maximum shift comfort and fuel economy. The TCM on most BMW vehicles is located in the E-Box next to the ECM (DME). Always refer to the proper ETM for TCM location.

There are several types of TCM housings:

- 35 Pin TCM (TCU) - used on the 4HP transmissions
- 55 Pin TCM - used on the A4S310R (THM-R1)
- 88 Pin TCM - used on all others up to 98
- 134 Pin TCM - used on all BMW transmission from the 99 model year.
 (Note- the 134 pin TCM was introduced on the 98 Models equipped with the A5S440Z).

The 134 Pin TCM is also referred to as SKE (Standard Shell Construction). The SKE housing uses 5 separate connectors. On transmission applications only three connectors (1, 3 and 4) are used. Connectors 2 and 5 are blank and are NOT used. The connectors are blue in color to avoid confusion with the ECM (DME) connectors which are black.

134 Pin control modules are supplied by Bosch for ZF transmissions and Siemens for Hydramatic transmissions. Bosch and Siemens control modules are NOT interchangeable.
Turbine Speed Sensor

The Turbine Speed Sensor is used to provide input (turbine) shaft speed information to the TCM (EGS). The input shaft speed signal is used in conjunction with the output shaft speed signal to determine gear range and slip time information for processing in the TCM. Not all BMW transmissions use a turbine speed sensor. Some TCM’s use the TD (engine speed) signal to determine input shaft speed. All transmissions with the exception of the A5S325Z use an inductive type sensor which generates an AC analog signal. The A5S325Z currently uses a Hall Effect Turbine Speed Sensor which will send a digital square wave signal to the TCM.

4HP22/24 (EH), A4S310/270R: These transmissions do not use a Turbine Speed Sensor. The TD signal is used to determine input shaft speed. The TD signal is an output signal of the DME control unit.

A5S310Z, A5S325Z, A5S440Z, A5S560Z, A5S360/390R: These transmissions use a turbine speed sensor. The TD signal is also used with the turbine speed signal to allow the TCM to monitor Torque Converter Clutch operation. The TCM can control torque converter clutch slippage and also monitor for faults.

Output Shaft Speed Sensor

The Output Shaft Speed Sensor is used to provide output shaft speed information to the TCM. The output shaft speed signal is used in conjunction with the turbine speed signal to provide the TCM with information on gear ranges and slip times.

All BMW electronic transmissions have an output shaft speed sensor. The output shaft speed sensor is an inductive type which will generate an AC analog signal to the TCM. The frequency and amplitude of the signal will increase as output shaft speed increases. The exact location of the output shaft speed sensor varies by transmission model.
Transmission Oil Temp Sensor

The TCM is provided with transmission oil temperature information via a temperature sensor. On most BMW transmissions, the sensor is an NTC element which is part of the transmission internal wiring harness.

4HP22/24 (EH): These transmissions do not use a transmission oil temperature sensor. There are no transmission oil temperature influenced features on the 4HP transmissions.

All Except A5S360/390R, GA6HP26Z: The transmission fluid temp sensor is part of the transmission internal wiring harness. On these transmissions, the sensor cannot be replaced separately. The harness must be replaced.

A5S360/390R transmission: the sensor is a separate, replaceable sensor that can be unplugged from the harness.

GA6HP26Z: the sensor is located in the Mechatronics Module, which is located inside of the transmission.

Note: The Mechatronics Module is not currently serviceable at this time. Contact the BMW Technical Hotline in the event of a failure. Do not attempt any repair or replacement of the Mechatronics Module.

The transmission oil temperature information is used to:

- Initiate the Warm Up Program
- To inhibit TCC operation until a specified temperature has been reached.
- For determining fluid level when used with diagnostic equipment.

The transmission oil temperature sensor is connected to the TCM via a 5 Volt reference and a circuit ground. As transmission oil temperature increases, the circuit resistance and voltage decrease proportionately.
Kickdown Switch

The TCM receives a kickdown request via one of two possible methods:

- The kickdown signal is a direct ground input to the TCM. The kickdown input is provided by a kickdown switch located under the accelerator pedal. This method is used on most BMW vehicles without electronic throttle control systems (except M52TU with MDK).

- The kickdown request is provided by the ECM (DME) via the CAN bus. The kickdown request originates from the PWG. There is no separate switch in the PWG. When the PWG voltage reaches approximately 4.5 volts, the ECM will process a kickdown request to the TCM via CAN. The PWG contains a kickdown detent to simulate the feel of a kickdown switch. This method is used on the M62TU, M54, M73, M73TU, N73 and N62 engines.
Brake Switch

The brake switch is located on the brake pedal linkage. The brake switch signal is an input to the TCM which is used for:

- De-activation of the shift lock solenoid. When the ignition key is turned to KL15 the shift lock is active. The shift lock solenoid is de-activated when the brakes are applied.

- De-activate the Torque Converter. The TCC is deactivated whenever the brake is applied. (only on Hydramatic Transmissions).

There are two types of brake switches used on BMW vehicles:

- On early vehicles such as E32, E34, E36, E24, E28 and E31 the brake switch is a double-contact mechanical switch. There is a brake light circuit and a brake test circuit. The brake test circuit is used for a plausibility check to indicate faults within the brake light circuit.

- On the E38, E39, E46, E65/66, E85 and E53 the brake switch is a hall effect type switch. The electronic switch is also monitored for faults and plausibility.
Transmission Range Selector Switch

The range selector switch is an input to the TCM. The input is used by the TCM to determine the position of the manual valve. The range switch uses the familiar “coded input” signal to determine selector lever position. On all transmissions except the A5S360/390R, the range switch uses a 4 wire configuration to determine 7 range selector positions. The A5S360/390R uses a five wire arrangement.

Most range switches are located on the transmission case with some exceptions. The E36 with the A4S270/310R the range switch is located is the center console on the selector lever assembly. The E39 with A4S270R the range switch is located on the transmission case and is adjustable. The range selector switch on the A5S360/390R is located inside the transmission housing. GA6HP26Z is part of the Mechatronics Module.

The range switch can be checked by using “Status Requests” in the DISplus or GT-1.
A multimeter or an oscilloscope can also be used to check the range switch. If the reading on “Status Requests” does not match the actual selector lever position, there will be various transmission malfunctions.

Always refer to the proper ETM when diagnosing the range selector switch. Use the switch logic chart to diagnose faults in the switch.

In the example below, the range switch is in neutral. Using the logic chart, switches L1, L2 and L3 are closed providing B+ voltage to the corresponding pins of the TCM. Switch L4 is open and no voltage is sent to the TCM. Malfunctions in the range switch or wiring can cause various shifting complaints and possible No-Start complaints.
Transmission Program Switch

The transmission program switch is used to switch between various operating modes of the transmission. The normal default mode of the TCM is Economy which is indicated in the program display as “E”. Economy mode allows the transmission to operate in the most efficient mode. Shift priorities are for maximum economy and shift comfort. On some vehicles the program switch is designated “A” for economy mode. Program switches come in 2 or 3 position configurations. Early vehicles with the 4HP (Early E7) used a rotary program switch.

The TCM can also be switched to “Manual Mode” which on some vehicles is designated “Winter Mode”. Manual mode is used to start the vehicle off in a higher gear when encountering slippery conditions. The program display will indicate “M” (manual) or an asterisk symbol for “Winter Mode”.

Sport Mode is the third operating mode that is available. Sport mode allows for a slightly delayed and more aggressive shift. Sport mode is obtained a number of ways. On vehicles with 2 position program switches, moving the selector lever out of drive to 4, 3, or 2 with the program switch in Economy will allow Sport mode. On vehicles with 3 position program switches, Sport mode can be obtained by switching to “S”.

E38 Selector Lever with 2 Position Program Switch

3 Position Program Switch
Steptronic Components

The Steptronic system uses additional components not found on a conventional system. These components consist of a manual switch and an Up/Down microswitch. Otherwise, the Steptronic system uses the same transmission and TCM.

The TCM monitors the Steptronic shifter position from P through D via the conventional range selector switch located on the transmission. The Range Selector Switch provides positions P through D to the TCM because the automatic gate of the shifter only travels through these positions.

When the Steptronic Shifter is moved to the left 15 degrees into the manual gate, the TCM receives a ground input from the manual gate switch. The ground signal is provided to the TCM through the Transmission Position Indicator. The transmission position indicator also provides range position signaling to the range position indicator in the shift console.

Steptronic was introduced on the E31 850Ci (10/94) and the 840Ci (1/96). Steptronic was subsequently introduced into the E38, E39, E46, E36/7 and the E53.

The Steptronic system can be diagnosed through “Status Requests” with the DISplus or GT-1.

Refer to TRI Bulletin B 24 75 96 for more information on Steptronic.

From 2002 model year the Steptronic shifter has changed slightly. Downshifts are now achieved by moving the selector lever forward and upshifts are now rearward.
Magnetic Valves

Magnetic Valves (MV) are used to electronically control hydraulic fluid flow to the various shift elements within the transmission. Magnetic valves are located on the valvebody and replaceable as separate components. In ZF transmissions, MV valves are designated MV1, MV2, MV3 etc. In Hydramatic transmissions, they are designated Shift Valve A, Shift Valve B, Shift Valve C etc.

The magnetic valves are controlled by the TCM. They are supplied power by an internal TCM relay and are ground controlled. The TCM switches one or more of the MV’s on or off in various combinations to achieve various shifts. Most transmission have 2 or 3 MV’s to control shifting.

In addition to controlling shifts within the transmission, magnetic valves are also used for overlap shifting and pressure regulation on some transmission applications. For example MV4 and MV5 are used for overlap shifting in the A5S310Z. MV5 is used for pressure regulation on the 4HP22/24EH transmissions. When used for pressure regulation, the magnetic valves are pulse width modulated by the TCM.
Pressure Regulating Solenoids

Pressure Regulating Solenoids are used to modify line pressure for use in the transmission. There are numerous terms for these solenoids depending upon transmission type and manufacturer. ZF transmissions use the term EDS, while Hydramatic Transmissions use the term DR solenoid, Force Motor Solenoid and Variable Bleed Solenoid (VBS).

EDS valves are used for main line pressure regulation, TCC application and Overlap Shift Pressure Control on the A5S440Z and A5S560Z. All pressure regulating solenoid are controlled by Pulse Width Modulation.

Using the example in the picture below, this is a section of the A5S440Z/560Z valve body. The EDS valves are used for the following:

- EDS 1 is used for main line pressure regulation
- EDS 2, 3 and 5 are used Overlap Shift Pressure Control
- EDS 4 is used for TCC application. (GWK) Gradually applied TCC.

Hydramatic Pressure Regulator

The valve body shown at the right is from the A5S360/390R. Note the location of the main pressure regulator. Depending upon the reference text, the pressure regulator is also known as the Force Motor Solenoid, Variable Bleed Solenoid or PC Solenoid.
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Position Slide Switch</td>
<td>9</td>
<td>EDS 2</td>
</tr>
<tr>
<td>2</td>
<td>Parking Lock Cylinder Piston</td>
<td>10</td>
<td>EDS 1</td>
</tr>
<tr>
<td>3</td>
<td>Solenoid Valve 3, parking lock Cylinder</td>
<td>11</td>
<td>Electronic Plug Connector</td>
</tr>
<tr>
<td>4</td>
<td>EDS</td>
<td>12</td>
<td>Electronic Module</td>
</tr>
<tr>
<td>5</td>
<td>Solenoid Valve 1</td>
<td>13</td>
<td>Hydraulic Module (Valve body)</td>
</tr>
<tr>
<td>6</td>
<td>EDS 4</td>
<td>14</td>
<td>Solenoid Valve 2</td>
</tr>
<tr>
<td>7</td>
<td>EDS 5</td>
<td>15</td>
<td>Position Switch</td>
</tr>
<tr>
<td>8</td>
<td>EDS 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Instrument Cluster

The cluster is used to report information to the driver regarding transmission status. There are three items of information needed by the driver:

- **Transmission Range** - this indicates the position of the range selector lever. The driver needs to know whether the transmission is in P, R, N, D, 4, 3, or 2.

- **Transmission Program** - this indicates the mode of operation. There are 3 modes, Economy, Manual and Sport.

- **Transmission Fault Information** - the driver needs to know if there is a malfunction in the transmission. Depending upon application, transmission faults can be indicated by an icon or by a “Transmission Program” message in the instrument cluster display matrix.

Depending upon vehicle model and transmission, these pieces of information arrive at the cluster through different methods:

- The most current method for this information to arrive at the cluster is through the CAN bus. The cluster processes this information from the TCM via CAN.

- On early E38 and E39 vehicles there is a “One Way Data Signal” from the TCM to the cluster. There is a one way serial data line that transfers this information to the cluster. On later vehicles, the cluster was introduced to the CAN bus and this method was no longer used. This was used on the E38 vehicles to 5/97 and E39 vehicles to 8/97 production.

- Early vehicles such as E32, E34, E36 etc. used a various combination of methods to transfer this data. Some clusters use the “Coded Input” method for the program indicator. Fault indication is done by a ground circuit through the TCM. Transmission range indication is achieved by a direct connection between the range switch and cluster or by a coded input to cluster.

There will be a FC6 in the Kombi when the TCM goes into failsafe mode. When attempting to diagnose any of these circuits, always refer to the proper ETM.
CAN Bus

Or

AGS

One Way Data Signal
- Selector Position
- Program Indication
- Fault Lamp/Matrix Display

Instrument Cluster
E34

"A" ("E")

"M"

TCM

Program Switch

"A"

"M"
Transmission Features and Principles of Operation

Adaptive Hydraulic Pressure Control

Pressure adaptation has been a feature of ZF automatic transmissions since the 4HP22EH. The TCM will maximize shift quality by adapting to transmission wear over time. The TCM will adjust transmission shift pressures to compensate for wear in the multi-plate clutches. This is accomplished by monitoring the input and output speeds of the transmission. When the transmission shifts, the TCM monitors the time that it takes to accomplish the shift. The time change in gear ratio is monitored and compared to an internal time value in the TCM. If the ratio change takes more time than the stored value, the TCM will compensate by adjusting the transmission shift pressures via the EDS valve solenoids. The adaptation value is stored in the TCM. This adaptation values can only be cleared by the diagnostic tester (DIS plus or GT-1).

Note: DO NOT clear adaptation values unless directed to do so by technical assistance. Clearing pressure adaptations should not be done to resolve a customer complaint. The only time that you would need to do so is after a transmission or valve body replacement or software change.

Also it is important not to confuse pressure adaptation with AGS features. AGS features will be discussed later in this chapter. AGS features are not stored on a long term basis and will not be cleared when the pressure adaptations are cleared. Note: Driving style is NOT stored.
Downshift Protection

Downshift protection is a feature that prevents unwanted or improper downshifting. If the range selector were moved to a lower gear at a high road speed, engine damage could occur from an unintended over-rev. This feature will prevent engine over-rev by delaying or preventing the unwanted downshift until the proper road speed is achieved. The result is increased safety by preventing unwanted deceleration slip.

Reverse Lockout

The TCM will lockout reverse above 3 MPH to prevent drivetrain damage. The range selector lever will go into the reverse detent, but reverse will not engage. This is achieved by the TCM through hydraulic intervention. The transmission will appear to be in neutral.

Note: Reverse Lockout is not operative when in failsafe.

Engine Warm Up Cycle

The transmission shift points are modified after cold start to raise engine RPM during shifting. This allows for a faster engine warm up and reduction of catalyst warm up time. The TCM uses the transmission oil temperature information to determine the implementation of this function.

The warm up phase program will be terminated if any of the following conditions exist:

- The vehicle exceeds 25 MPH or
- Transmission oil temperature exceeds 60 Degrees Celsius or
- A Maximum of three minutes is exceeded.

ASC/DSC Shift Intervention

During ASC/DSC regulation upshifts are inhibited to enhance the effectiveness of tractional control. Depending upon vehicle model, this action can take place via the CAN bus or a dedicated shift intervention signal wire. On later model vehicles where the ASC/DSC module is connected to the CAN bus, the shift intervention signal is sent to the TCM via CAN.

Torque Reduction

In order to allow a smoother shift and reduce load on the transmission, engine torque is reduced during shifting. This is accomplished by a signal that is sent from the TCM (EGS) to the ECM (DME) during shifting. The ECM will retard timing momentarily during the shift for a few milliseconds. This timing change is transparent to the driver. Depending upon application, the torque reduction signal is sent over a dedicated wire or a signal over the CAN bus.
Emergency Program

When a malfunction occurs within the transmission, the Emergency program (failsafe mode) will be initiated. The Emergency Program will prevent unintended gear engagement and ensure driver safety. The following will occur during Failsafe Operation:

- All shift solenoids are de-energized via TCM internal relay.
- The pressure regulation solenoid is de-energized resulting in maximum line pressure.
- The Torque Converter Clutch is de-activated.
- The Reverse Lockout function is cancelled.
- Shift lock solenoid is de-energized.
- Fault indicators are active.

The fault indicator varies depending upon model, year and cluster type etc. High version instrument cluster will display a message in the matrix display. Vehicles with low version clusters will display a fault symbol in the cluster.

During failsafe mode the transmission will be shifted into a higher gear to allow the vehicle to be driven to a service location. Depending upon application, the transmission will shift into 3rd or 4th gear (on a 4spd) and 4th or 5th gear (on a 5 spd). For example the A5S360R transmission will go into 5th gear when there is a malfunction and 4th when there is a power failure to the TCM. Since pressure regulation ceases, the shift to failsafe mode will be abrupt or harsh, unless the transmission is already in the failsafe gear.

On newer OBD II compliant vehicles, the MIL light will also be illuminated by the ECM (DME).

Note: When diagnosing transmission related complaints, it is possible to have an erroneous fault indicator warning. Faults in the cluster can cause a false indication or “Trans Program” message. One indication of this scenario would be a transmission fault message in the cluster with no transmission faults stored in the TCM.

E46 Transmission Fault Indicator
AC Compressor Load Sensing (Hydramatic Transmissions)

When the AC Compressor is switched on, additional load is placed on the engine. To compensate for the additional load, the TCM modifies line pressure and shift points. On the THMR-1, the TCM receives these signals via a direct connection to the AC compressor control circuit.

On vehicles equipped with CAN bus technology, the “AC on” signal is sent to the TCM from the DME as a CAN bus message.

Shift Lock

The shift lock solenoid is mounted on the selector lever assembly and locks the selector lever in Park or Neutral when the ignition is ON. This prevent the selection of a gear unless the brake pedal is depressed. The solenoid is actuated by a switched ground from the TCM. Power is supplied by the TCM internal relay. During failsafe operation, the shift lock is disabled. On later models, the shift lock will also be active when the TD signal is present and the shifter will remain locked above an engine speed of 2500 RPM regardless of brake application.
Torque Converter Clutch

Since the efficiency of the torque converter at coupling speed is approximately 1.1 to 1, fuel economy is compromised. To offset this a torque converter clutch was added on EH controlled transmissions. The torque converter clutch locks the turbine to the converter housing. This creates a mechanical coupling with a ratio of 1:1. This can only be achieved at higher engine speeds, the torque converter clutch must be disengaged at low engine speeds to prevent stalling.

There are two methods for controlling the torque converter clutch on BMW transmissions:

- **A4S310/270R, 4HP22/24 EH, A5S310Z** - These transmissions use an on/off control method to lock and unlock the torque converter. The Torque Converter Clutch is either completely engaged or disengaged. This method of engagement provides an abrupt sensation when the TCC is locking and unlocking. This abrupt sensation can be undesirable to some drivers.

- **A5S560Z, A5S440Z, A5S325Z, GA6HP26Z,A5S360/390R** - These transmissions use a gradual approach to TCC control. The TCC is gradually applied and released, this method reduces the abrupt feel of the on/off type TCC. The TCC solenoid is controlled by pulse width modulation. This allows fluid to be gradually introduced and released to the TCC.

The TCC is spring loaded to the engaged position. Pressurized fluid releases the TCC, when the pressurized fluid is released, the TCC is engaged. Depending on transmission application, the TCC can be engaged in 3rd, 4th or 5th gear. The TCC must be disengaged at low speeds to prevent stalling.
Lock-Up Torque Converter

- Impeller
- Stator
- One Way Clutch
- Torque Converter
- Clutch Piston
- Torque Converter Shell
- Turbine Shaft Splines
- Turbine
- Torque Clutch
- Electronic Transmission Control
Shift Solenoid Control

Magnetic valves are used to direct the flow of transmission fluid to control shift elements in the transmission. Another Term for “Magnetic Valve” is “Shift Valve”. Magnetic valves (MV) are solenoids controlled by the TCM. They can be switched by B+ or B-.

On ZF transmissions, magnetic valves are designated MV1, MV2, MV3 etc. On GM transmissions they are designated Shift Valve A, Shift Valve B, Shift Valve C etc.

Either valve can be checked for proper resistance using a multi-meter, DISplus or GT-1. Also, the “Activate Components” function can be used to check the Magnetic valves. Most all magnetic valves are switched on/off instead of Pulse Width Modulation (PWM).

All magnetic valves (except THM R-1 to 12/95) are supplied power from an internal relay located in the TCM. The magnetic valves are switched on and off by final stage transistors in the TCM. During failsafe operation, power to all MV’s is switched off by the internal relay.

Magnetic valves are located on the valve body. They can be replaced individually. Refer to proper repair instructions for installation and removal procedures.
Pressure Regulation

Pressure regulating solenoids modify line pressure for hydraulic operation. Solenoids for pressure regulation are referred to as EDS valves in ZF transmissions. GM transmissions have a few terms such as Force Motor Solenoid, Variable Bleed Solenoid, and DR solenoid. Regardless of the name used, they are all used to control main line pressure based on throttle position and engine load.

On ZF transmissions, EDS valves are also used to control “Overlap Shifting”. This allows for improved shift comfort by controlling pressures during shifting.

Depending upon transmission application, pressure regulating solenoids can be controlled using Pulse Width Modulation on B+ or B-.

The TCM will increase line pressure by regulating current flow to the pressure regulator. Current flow is controlled by pulse width modulation. When the duty cycle is low, the current flow to the solenoid is low. This allows spring pressure to close the valve. Therefore maximum line pressure is achieved. As the duty cycle increases, the current flow also increases. The valve opening increases, which allows pressure to be released through the pressure discharge which in turn decreases line pressure.

Main line pressure is also increased during failsafe operation and when needed during “Adaptive Hydraulic Pressure Control” functions. Mainline pressure will also default to maximum pressure when power to the TCM is switched off.
Shift Programs

BMW EH transmissions have selectable shift programs (or modes) to suit driver needs and operating conditions. There are 3 basic shift programs available:

- **Economy Program** - The economy program is the default program which is adopted every time the vehicle is started. When in economy mode, the operating priority is for maximum economy and shift comfort. Shifts will take place at low engine RPM and road speed. The economy mode is indicated by an “A” on the program switch. The cluster will display an “E” to indicate economy mode.

- **Manual Mode (Winter Mode)** - Manual mode is used to start out the vehicle in a higher gear on slippery surfaces when more traction is needed. A higher gear will reduce torque to the rear wheels. Manual mode can also be used to select a lower gear when needed such as when climbing a hill. Depending upon vehicle application an “M” will appear in the cluster when in Manual Mode or an asterisk (*) symbol will appear in the instrument cluster to indicate Winter Mode.

- **Sport Mode** - Sport Mode provides raised shift points and a more aggressive shift program for the “Enthusiastic” BMW driver. The cluster will display an “S” when in sport mode.

Regardless of vehicle application, the program switch provides a momentary ground to the TCM to switch between modes. There have been numerous designs of the program switch since it’s introduction. The program switch configurations are as follows:

- **2 Position Slide Switch** - This switch has the “A” and the “M” selection. Sport mode is achieved by moving the selector lever from “D” to 4, 3 or 2 when in the Economy Mode. The 2 Position slide switch is used on most models. These vehicles usually have a range and program display located in the instrument cluster.

- **2 Position Rocker Switch** - This switch operates the same as the slide switch, but it is used exclusively on the E36. The E36 does not have a program indicator in the cluster. The rocker switch will illuminate, indicating the current program.

- **3 Position Slide Switch** - This switch has the added position for sport mode. The shifter does not have to be moved out of drive (D) to be in sport mode. This switch is used on the E36 M3 and the 4HP22/24 EH (Version Late E-7).

- **3 Position Rotary Switch** - This switch is used only on the Early 4HP22 EH transmissions (Version Early E-7).

- **No Program Switch** - On some vehicles with AGS features, there is no program switch. Shift modes are obtained by moving the shift lever out of “D” range or automatically by adaptive shift functions. (Example E39)
3 Position Program Switch

E38 Selector Lever and Program Switch (2 Position)

Instrument Cluster (E34)

Program Switch

TCM
Steptronic Shift Modes

The Steptronic shifting system was introduced to the BMW model line on the 95 E31 850Ci (from 10/94). Steptronic was subsequently added to other BMW models and is available on all BMW models with automatic transmissions. Other than a few additional components in the shifter mechanism, Steptronic equipped vehicles use the same transmission and TCM as non-Steptronic equipped vehicles.

Since the introduction of Steptronic, there have been several variations in Steptronic function. Regardless of version, the Steptronic system provides the driver with two modes of operation:

- To operate the transmission in fully automatic mode as with a non-Steptronic transmission.
- To operate the transmission in the manual shift mode by tilting the shift lever forward or backward when in the manual gate.

The Steptronic shift lever console contains automatic and a manual shift gate. The automatic gate contains the gear lever positions P/R/N/D. When the lever is placed in “D” all of the shifting takes place based on the shift map programming in the TCM. To enter the manual gate the shift lever is moved 15 degrees to the left. Depending upon application, there are three possible configurations of the manual gate:

- On the E31 850Ci, the gate is marked as “M” only. There is a plus and minus sign for manual shifting. Upshifts are achieved by momentarily moving the shifter forward. Downshifts are achieved by moving the shifter rearward. When placing the shifter into the “M” gate, the transmission will adopt the current gear that is engaged. The transmission will stay in that gear until an upshift or down shift request is made.

- On all other vehicles until the 2002 model year, the gate is marked M/S. There is also a plus and minus sign for manual shifting. When placing the shifter into the M/S gate, the transmission will adopt Sport mode. All shifts will still be automatic. Full manual mode is achieved when an upshift or downshift request is made. Upshifts are achieved by moving the shifter forward momentarily and downshifts are achieved by moving the shifter rearward.

- On all models with Steptronic from 2002, the only change is to the manual shifting modes. In order to be consistent with SMG operation, the positions were reversed. Upshifts are now achieved by moving the shifter rearward and downshifts are now forward. Otherwise, Steptronic operation is identical to the previous models.
Automatic Functions in Manual Mode

When in manual mode there are certain functions which occur automatically to prevent drivetrain damage and improve driveability:

- **Engine Overspeed Prevention:** To prevent engine over-rev, the TCM will upshift automatically just prior to max engine cutoff.

- **Kickdown:** If plausible, the TCM will automatically shift down to the next lower when a kickdown request is received.

- **Decelerating:** If in 5th gear and coasting to a stop, the TCM will automatically downshift to 4th gear at approximately 31 mph and then 3rd gear at approximately 19 mph. The automatic downshift allows for an acceptable gear when re-accelerating. (6 cylinder models will shift to 2nd gear when stopping vehicle)

- **Implausible Gear Requests:** Certain shift requests are ignored by the TCM. For example, requesting a downshift at a high rate of speed would be ignored. Any shift request that would cause the engine to exceed the maximum RPM limit would not be allowed. Also starting out in a high gear is also not allowed. Only 1st, 2nd or third gear is allowed when accelerating from a stop.
Steptronic Shifter Circuit

In order to achieve manual shifts with Steptronic, the selector lever is moved 15 degrees to the left. A pin on the selector lever engages the “up/down” microswitches which are a ground input to the TCM. The selector lever also triggers the “M” gate microswitch which is also a ground input to the TCM.

The example on the right shows a typical shift console for an E31. Note the shift pattern, upshifts are forward and downshifts are rearward. This shift pattern was used on vehicles up to the end of 2001 production. On vehicles from 2002 production, the shift pattern is reversed.
Steptronic System Comparison

<table>
<thead>
<tr>
<th>Detail</th>
<th>E31 850Ci
1995 to 1997</th>
<th>All model except
E31 850Ci up to
2001 Model year with Steptronic.</th>
<th>All Models from
2002 model year with Steptronic.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift Console Layout</td>
<td>“M” Gate</td>
<td>M/S Gate</td>
<td>M/S Gate</td>
</tr>
<tr>
<td>Selection of Manual Mode</td>
<td>Shift to “M” gate</td>
<td>Shift to “M/S” gate and move lever momentarily to “+” or to “-”.</td>
<td>Shift to “M/S” gate and move lever momentarily to “+” or to “-”.</td>
</tr>
<tr>
<td>Gear Range in Manual Mode.</td>
<td>2nd to 5th gear (1st gear only accepted for 2 minutes after cold start. If the throttle is pressed 100% a 2-1 shift will occur)</td>
<td>1st to 5th gears</td>
<td>1st to 5th gears</td>
</tr>
<tr>
<td>Un-allowable gear requests.</td>
<td>4th and 5th gear after vehicle standstill. Downshifts that can cause engine over-rev. 1st gear after engine warm up.</td>
<td>4th and 5th gear after vehicle standstill. Downshifts that can cause engine over-rev.</td>
<td>4th and 5th gear after vehicle standstill. Downshifts that can cause engine over-rev.</td>
</tr>
<tr>
<td>Upshifts/Downshifts</td>
<td>Upshifts - Forward
Downshifts - Rear</td>
<td>Upshifts - Forward
Downshifts - Rear</td>
<td>Upshifts - Rear
Downshifts - Forward</td>
</tr>
</tbody>
</table>

Shift Pattern up to 2001

![Shift Pattern up to 2001](image1)

Shift Pattern from 2002

![Shift Pattern from 2002](image2)